2,933 research outputs found

    Results from thinning experiments in 2002 and 2003

    Get PDF
    In 2002 an experiment about thinning blossoms of the apple variety 'Pinova' lime sulfur (in 2002 45 % thinning) and sodium salt (21 % thinning) showed good effects, the number of blossom-clusters in 2003 was very high in the lime sulfur parcels. Results from extracts of Hericium erinaceum in 2003 have to be replicated again, the number of applications must be increased

    Abrupt and gradual changes of information through the Kane solid state computer

    Full text link
    The susceptibility of the transformed information to the filed and system parameters is investigated for the Kane solid state computer. It has been shown, that the field polarization and the initial state of the system play the central roles on the abrupt and gradual quench of the purity and the fidelity. If the field and the initial state are in different polarizations, then the purity and the fidelity decrease abruptly, while for the common polarization the decay is gradual and smooth. For some class of initial states one can send the information without any loss. Therefore, by controlling on the devices one can increase the time of safe communication, reduce the amount of exchange information between the state and its environment and minimize the purity decrease rate

    Showcasing HH production: Benchmarks for the (HL-)LHC

    Get PDF
    Current projections suggest that the LHC will have only limited sensitivity to di-Higgs production in the Standard Model (SM), possibly even after the completion of its high luminosity phase. Multi-Higgs final states play a fundamental role in many extensions of the SM as they are intrinsically sensitive to modifications of the Higgs sector. Therefore, any new observation in multi-Higgs final states could be linked to a range of beyond the SM (BSM) phenomena that are not sufficiently addressed by the SM. Extensions of the Higgs sector typically lead to new phenomenological signatures in multi-Higgs final states that are vastly different from the SM expectation. In this work, we provide a range of signature-driven benchmark points for resonant and non-resonant BSM di-Higgs production that motivate non-SM kinematic correlations and multi-fermion discovery channels. Relying on theoretically well-motivated assumptions, special attention is devoted to the particular case where the presence of new physics will dominantly manifest itself in multi-Higgs final states

    Mutually unbiased bases in dimension six: The four most distant bases

    Full text link
    We consider the average distance between four bases in dimension six. The distance between two orthonormal bases vanishes when the bases are the same, and the distance reaches its maximal value of unity when the bases are unbiased. We perform a numerical search for the maximum average distance and find it to be strictly smaller than unity. This is strong evidence that no four mutually unbiased bases exist in dimension six. We also provide a two-parameter family of three bases which, together with the canonical basis, reach the numerically-found maximum of the average distance, and we conduct a detailed study of the structure of the extremal set of bases.Comment: 10 pages, 2 figures, 1 tabl

    Interacting Bosons at Finite Temperature: How Bogolubov Visited a Black Hole and Came Home Again

    Get PDF
    The structure of the thermal equilibrium state of a weakly interacting Bose gas is of current interest. We calculate the density matrix of that state in two ways. The most effective method, in terms of yielding a simple, explicit answer, is to construct a generating function within the traditional framework of quantum statistical mechanics. The alternative method, arguably more interesting, is to construct the thermal state as a vector state in an artificial system with twice as many degrees of freedom. It is well known that this construction has an actual physical realization in the quantum thermodynamics of black holes, where the added degrees of freedom correspond to the second sheet of the Kruskal manifold and the thermal vector state is a state of the Unruh or the Hartle-Hawking type. What is unusual about the present work is that the Bogolubov transformation used to construct the thermal state combines in a rather symmetrical way with Bogolubov's original transformation of the same form, used to implement the interaction of the nonideal gas in linear approximation. In addition to providing a density matrix, the method makes it possible to calculate efficiently certain expectation values directly in terms of the thermal vector state of the doubled system.Comment: 25 pages, LaTeX. To appear in a special issue of Foundations of Physics in honor of Jacob Bekenstei

    Kac-Moody Symmetries of Ten-dimensional Non-maximal Supergravity Theories

    Full text link
    A description of the bosonic sector of ten-dimensional N=1 supergravity as a non-linear realisation is given. We show that if a suitable extension of this theory were invariant under a Kac-Moody algebra, then this algebra would have to contain a rank eleven Kac-Moody algebra, that can be identified to be a particular real form of very-extended D_8. We also describe the extension of N=1 supergravity coupled to an abelian vector gauge field as a non-linear realisation, and find the Kac-Moody algebra governing the symmetries of this theory to be very-extended B_8. Finally, we discuss the related points for the N=1 supergravity coupled to an arbitrary number of abelian vector gauge fields

    Raw-data attacks in quantum cryptography with partial tomography

    Get PDF
    We consider a variant of the BB84 protocol for quantum cryptography, the prototype of tomographically incomplete protocols, where the key is generated by one-way communication rather than the usual two-way communication. Our analysis, backed by numerical evidence, establishes thresholds for eavesdropping attacks on the raw data and on the generated key at quantum bit error rates of 10% and 6.15%, respectively. Both thresholds are lower than the threshold for unconditional security in the standard BB84 protocol.Comment: 11 pages, 2 figure

    E11 and Spheric Vacuum Solutions of Eleven- and Ten dimensional Supergravity Theories

    Full text link
    In view of the newly conjectured Kac-Moody symmetries of supergravity theories placed in eleven and ten dimensions, the relation between these symmetry groups and possible compactifications are examined. In particular, we identify the relevant group cosets that parametrise the vacuum solutions of AdS x S type.Comment: discussion improve
    corecore